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Review of high bandwidth fiber optica radiation sensors*
Peter B. Lyons

University of California, Los Alamos National Laboratory
P.0. Box 1663, MS E527, Los Alamos, New Mexico 87545

Introduction

Fiber optics are being effectively utilized in an lucreasing range of data and infor-
mation transfer applications. A less mature, but equally challenging, application of fiber
optice concerns their use for a host of sensor technologies. Fiber sensors have now been
developed for measurement of many physical parameters. These sensor systems freguently
exploit saveral general attributes of fibers, including: cost, an all-dielectric crans-
mission medium, freedom from electrical interference, bandwidth, resistance to degradation
in severe or adverse environments, light weight, et:.

Thin paper summarizes the use of fiber optics or guided optical systems for radiation
senscrs. It 18 limited to passive systems wherein elaectrical power is not required at the
sensor location. However, electrically powered light sources, recelvers and/or recorders
may still be required for detection and data atorage in sensor system operation. This
paper emphasizes sansor technologies that permit high bandwldth measurements of traasient
radiation levels, and will also discuss several low bandwidth applications.

In addition to discusslon of several specific usenaor concepts, an extensive bibliography
is 1included to gulde research into these, or other, forms of radiation sensors. %he
bibliography is subdivided into four major subdivisions. 1In the bibliography, each paper
is listed only once, even though a given paper may include data appropriate to several
sections. Furthermore, to avold long reference lists within the text, only a few of the
bibliographical entries are referenced therein. The present confarence is not included in
the reference 1list, but includes several raelated gapers. Four other general reviews of
related technologies may be of particular benefit.i-

Radiation effects on optical fibers

At least six different radlatinn effacts on optical fibers have been documented: (Some

of the effects mentioned below are interrelated, in that one effect implies the existence
of another effect.)

1) Dimenaional Modifications - Extensive 1literature has documented alteratlons of
materlal structure under 4irradiation.60 Radiation can both cause defects 1in
materials and, under some conditions, can serve to anneal def{ects. Such changes in
microscopic structure can be anticipated to lead to diﬂﬁpnlonnl or Jensity modifi-
cations, +nd such effects in fibars have been documented.

2) Refre:tive Index - A change in density or dimensi.n will lead to & modificetion in
ralractive index. For example, Bertolotci, et al obsorved a change of 2.87 in
refractive incex in Pb-silicate core glass fibers aFter irradiation to 1000 rads.>8

3) Thermoluminescence - Thermoluminescence 1is the basis for many simple radiation
monitors using small chips or ssmples of several crystalline materials (e.g., LiF or
CaFz). This process relies on the creation of deep traps in a material subjected
to radiation, the gubsequent thearmal release of trapped charges, and radiative
recombination of these mobile charges at another site in the lattice. This rediative
decay folluwing recombination leads to an obnervablﬁ l&ght output. Theruwo umines-
cence has besn observed and studied in optical fibers.l!3,

4) Modal Properties - Light ia ctransmitted within a fibar 1in opecific modes, charac-
terlzed by diTTerent spatial and angular distributions. Propagation characteristics
of {ndividual modes mey be modified by radiation in several ways. For examplae,
different modes preferentially propagate in different reglons of a fiber. 1f
radiatlou-inducad absorption varies across a fiber (perhaps due to a gradient in
fiber comrolltion). modas will Le affected to varying extents. The pulse dispersion
characteriatics of a flber depend on the dlltrlbut{on of optical power among the

"Work perforued under the auspices of the U.S. Department of Energy.
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modes__in the fiber. Differences in radiation-induced attenuation of different

modes wiﬁ?}n a fiber have been documented, as have substantial changes in pulse
dispersion.

5) Absorption - Color centers are created during radiation exposure in optical fibers
under 1Irradiation. Extensive 1literature treats this phenomenon wunder many
experimental conditions.

6) Luminescence - Both fibers and many other optical materials will emit light under
rradiation. Again, very extensive literature addresses this phenomenon.

Processes 1-6 could be used for sensor applications. To the author's knowledge, processes
1, 2, and 4 nave not been exploited as a sensor. Process 3 probably could be exploited,
given a suitable sensor requirerent. The last two processes have been extensively used and
will be emphasized herein.

Both absorption and luminescence may occur either within a fiber (an "internal' sensor)
or within a material adjacent to a fiber link (an '"external' sensor). Both internal and
external sensors are discussed in this paper. Furthermore, both phenomena may be used in
high and low bandwidths systems.

Absorption and luminescence processes (number 3, 5 and 6) require intensity detection
rather than phase-sensitive detection. Processes 1 and 2 could be used in a phase-
gensitive mode. Process 4 might require a spatial mode detection system. All gystams
discussed hereln use Iintensity detection.

Radiation sensors utilizing absorption phenomena

Alternative fiber compositions and draw conditions result in very large changes in both
short- and lonf-term radiation-induced absorption. Many literature studifs, particularly
from the Naval Research Laboratory (NRL), document these differences. For example,
germanium-doped silica fibers demonstrate substantial transient absorption and a rapid
recovery of the attenuation while phosphorus-doped fibers dicplay less transient upset but
very little recovery at long times. Both temperature (thermal annealing) and light level
(photobleaching) are critical parameters in absorption observations.

At least three low-bandwidth fiber radiation sensor systems have been discussed in the
literature. In 1977-78, an NRL package was flown on the Navigational Technology
Satellite-2 and returued data ?n space radlation levels as a fuaction of shielding for
times in oxcess of one year.? A large "fiber" system was dez%ngirgzed using an FEP
plastic tube with a dye solution of appropriate index as a core.%¢,2l- This dosimeter
system has been extensively documented and has demonstrated useful performance over ngy
decaders of dose. A Pb-gilicate core fiber was used in a civil defense dosimeter.
These systems benefit from a key attribute nf fiber sensor systems in that the absorption

pheaomena scale with sensor length and wide ranges of dose may be studied with systems of
varying length.

Transient abgorption in fiber optics has been studied by several agzrssories, including
Los Alamos National Laboratory and the Naval Research Laboratory.!»?9, In principle,
transient dosimetry measurements should be possible with fiber absorption sensors, but to
the author'n knowledge, successful systems have not been implemented.

Such systems concepts are complicated by two phenomena:

1. In most f£ibers, substantial recovery of transient abgorption occurs on nanosecond
time scales. Time-resolved dosimetry must deconvolve such recovery to determine
the 4input radiation pulse time history. (Some fibers, notably phosphorus=-doped
fibers, would show minimal recovery and wight be more sultable for transient
dostmec§y. but to date these fibers have not been studied on nanosecond time
scales.

2, Mensurements of transient lbu%ﬁption for various dose levels have been reported on
radiation resistant fibers. Thepe measurements have yielded a strongly
nonlinear relationahip between radiation dose and transient absc :ption magnitude.

Either one of these twe phenomana would complicate accurate transiant doglmetry using
absorption in -~prinal fibers. Taken tugether, they have dlacouraged the use of fiber
sbsorption for transient dosimetry.

Absorption in optical materials external to optical fibers may also be consldered.
Radiation-induced optical absorption has been noted in many materfials. One of the many
onsibllitine  woul utilize hydrated (or solvated) alactrons {n aqueous sclutlions.
ydrated electrons offer a very fast (few pmec), but {nsennitive, abrorption mechanism.
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Radiation sensors using luminescence phenomena

Fibers, as well as many other materials, can luminesce when exposed to fonizing radia-
tion. These can form the basis for a wide range of sensor possibilities using luminescence
internal or external to the fiber.

Both short- and long-term luminescence components have been identified from irradiatioa
of optical fibers. Short-term components acsociated with pulsed, high energy, e-beanm
irradiation of fibers have been lyswn from wavelength and geometrical dependences to be
dominated by Cerenkov radiation. Calculations and measurements of Cerenkov 11§8t
coupling coefficients for specific geometries are available 1in the 1literature.

Low-energy electron 1rradinti9n7 have also documented long-lived luminescence associated
with fluorescence mechanisms.l/,49

For sensor systems employing shor! lengths cof fiber, degradation of the luminescence by
fiber transmission limitations 1s not a serious concern. Many systems have used acin-
tillating material, f&tggr plastic or varlous glasses, for fiber core material. Early
systems of this type YV~ relied on an air-glgsa}c intevface for light guiding, but more
modern systems utilize cladding materials.>,®,l Arrays of short scintillating £fibers
have been extensively used in high energy particle physics research to localize ionization
tracks. Conventional plastic scintillator films have been successfully used; together with

cohereTE fiber bundles or arrays, to document space and time evolution of particle
beams.

For sensors systems requiring remote recording, the length of fiber can severely distort
the observation. Both fiber attenuation and nmaterial d%aperalon conplicate data trans-
mission through long fibers. 1In addition, the small core area of high bandwidcth fibers
limits the amount of 1light coupled into propagating modes of the fiber. Both fiber
attenuation and material dispersion are mirimized for long wavelength asystems. (As rou%h
approximations, useful for wavelengths appropriate to ''standard'" ecintillagion materials
(350-500 om), these two phenomena scale with_ wavelength, A, as A- and X™9))
Unfortunately, Cerenkov light output scales as A~3, theraby yielding 1less light at the
longer wavelengths of interest.

Considerable effort has been expended to utilize Cerenkov light as a r-~diation sensor,
largely because it is an extremely fast proceas. Cerenkov light tracks the transit time of
charged particies through the optical material. Material dispersion concerns were Eﬂ'
dressed in the first systems by using only a narrow spectral window in the sys:em.
(Material dispersion over 1 km of fiber at 800 nm contributes about 110-120 ps of pulse
disperaion per nanometer of spectral window). This only complicated the low sensitivity of
these systems by rejecting most of the usable light.

Improvements have included three techniques:

1. Spectral Equalization - This development used a grating to dispersu the Cerenkov
pulse Iato varlous "equalizing" fibers, each fiber accepting a narrow (1 nm) spectral
width. Fach fiber was cut to a length, different for each fiber (and therefore,
wavelangth), to cancel material dispersion yith fiber traniit tinme. All equalizing
fibers illuminnted the fina) photudetector.?

2. Streak Equalization - This developasnt dispersed the Cerenkcv pulse onto the photo-
cathode of & streak camera such that the direction of the sweep deflection was
parallel to the wavelength dispersion axis. A eweep speed can be chosen to cancel
material dispersion over a limited wavelength 1nt¢rvng.

3. Both concepts, 1 and 2, have been combined into one syntem thereby allowing a more
flaxible choice of operating parameters.

All three techniques have been used to varying extents. However, the first technique {is
more limited in speed by the use of n photomultiplier (~200 ps FWHM), whereas streak tubes

(used in the latter two techniques) can be much faster. Recent improvements to (1) have
now allowed it to use streak recording.

Specinl ecintillators have also been developed to prnvide a light output useful with
long fiber lengths. Both organic and inorganic aciutillatora have been studied %o %nibmiza
light output efficlency, increase wavelength, and mininize time res onse. 16,18,20,
These nystems have been extensively used, frequently in conjunction with fiber/scintillator
arrays to provide time and spatial ren:lution ot a radlaticn source.
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Conclusion

Fiber optic rediation sensors have been widely used in diagnostic applications. Future
review papers on thie subject will doubtless be more extenaive than this effort, as wmore
numerous and diverse applications of these technologies are documented.
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